Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Dipotassium diaguabis(methylenediphosphonato- $\kappa^2 O, O'$ )cobaltate(II)

#### H.G. Visser,\* J.A. Venter and K.A. Van der Merwe

Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300. South Africa

Correspondence e-mail: visserhg.sci@ufs.ac.za

Received 12 November 2009; accepted 26 November 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma(P-C) = 0.004$  Å; R factor = 0.040; wR factor = 0.096; data-to-parameter ratio = 15.5.

In the title complex,  $K_2[Co(CH_4O_6P_2)_2(H_2O)_2]$ , the asymmetric unit contains two K<sup>+</sup> cations and two half-anions in which the Co atoms lie on inversion centers. The Co<sup>II</sup> ions assume an octahedral CoO<sub>6</sub> coordination geometry. In the crystal, a three-dimensional network is formed through O-H...O hydrogen-bond interactions as well as intermolecular interactions between the K<sup>+</sup> cations and neighbouring O atoms.

#### **Related literature**

For related structures, see: DeLaMatter et al. (1973); Jurisson et al. (1983); Barthelet et al. (2002); Stahl et al. (2006); Van der Merwe et al. (2009).



#### **Experimental**

Crystal data

 $K_{2}[Co(CH_{4}O_{6}P_{2})_{2}(H_{2}O)_{2}]$  $M_r = 521.13$ Triclinic,  $P\overline{1}$ a = 6.4523 (3) Å b = 8.7056 (3) Å c = 13.1930 (5) Å  $\alpha = 91.334 \ (2)^{\circ}$  $\beta = 93.304 \ (2)^{\circ}$ 

Data collection

Bruker X8 APEXII 4K Kappa CCD diffractometer Absorption correction: multi-scan SADABS (Bruker, 2004)  $T_{\rm min}=0.635,\ T_{\rm max}=0.690$ 

13474 measured reflections 3645 independent reflections 3194 reflections with  $I > 2\sigma(I)$  $R_{\rm int}=0.036$ 

 $\gamma = 93.333 \ (2)^{\circ}$ 

Z = 2

V = 738.32 (5) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.28 \times 0.17 \times 0.17~\mathrm{mm}$ 

 $\mu = 2.23 \text{ mm}^{-1}$ 

T = 100 K

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.040$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.1096$              | independent and constrained                                |
| S = 1.23                        | refinement                                                 |
| 3645 reflections                | $\Delta \rho_{\rm max} = 1.04 \text{ e } \text{\AA}^{-3}$  |
| 235parameters                   | $\Delta \rho_{\rm min} = -0.61 \text{ e } \text{\AA}^{-3}$ |
| 14 restraints                   |                                                            |

#### Table 1

Selected bond lengths (Å).

| O1-Co1 | 2.052 (3) | O8-Co2  | 2.081 (3) |
|--------|-----------|---------|-----------|
| O2-Co1 | 2.132 (2) | O9-Co2  | 2.117 (2) |
| O3-Co1 | 2.127 (3) | O10-Co2 | 2.064 (3) |

### Table 2

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$          | D-H            | $H \cdot \cdot \cdot A$ | $D \cdots A$      | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------------------------|----------------|-------------------------|-------------------|--------------------------------------|
| $O3-H3A\cdots O14^{i}$               | 0.85 (2)       | 1.83 (2)                | 2.680 (4)         | 175 (4)                              |
| $O3-H3B\cdots O6^{ii}$               | 0.86 (2)       | 1.89 (2)                | 2.737 (4)         | 172 (4)                              |
| O4−H4···O9 <sup>iii</sup>            | 0.84(2)        | 1.81 (2)                | 2.632 (4)         | 166 (5)                              |
| $O7-H7\cdots O6^{iv}$                | 0.85(2)        | 1.72 (2)                | 2.570 (4)         | 177 (5)                              |
| $O8-H8A\cdots O5^{v}$                | 0.85 (2)       | 1.84 (2)                | 2.678 (4)         | 170 (4)                              |
| $O8-H8B\cdots O11^{vi}$              | 0.85 (2)       | 1.84 (2)                | 2.687 (4)         | 176 (5)                              |
| $O12-H12\cdots O11^{vii}$            | 0.85 (1)       | 1.72 (1)                | 2.561 (4)         | 175 (5)                              |
| $O13{-}H13{\cdot}{\cdot}{\cdot}O2^i$ | 0.84 (2)       | 1.78 (2)                | 2.616 (4)         | 174 (5)                              |
| Symmetry codes: (i)                  | -x + 1, -y + 2 | 1, -z; (ii) x -         | -1, y, z; (iii) x | y, y + 1, z; (iv)                    |
| -x + 2, -y + 2, -z;                  | (v) x, y -     | 1, z; (vi)              | -x + 2, -y, -     | z + 1; (vii)                         |
| -x + 2, -y + 1, -z + 1               |                |                         |                   |                                      |

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

The research fund of the University of the Free State is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2013).

#### References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Barthelet, K., Riou, D. & Férey, G. (2002). Acta Cryst. C58, m264-m265.
- Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn,
- Germany. Bruker (2004). SAINT-Plus (including XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- DeLaMatter, D., McCullough, J. J. & Calvo, C. (1973). J. Phys. Chem. 77, 1146-1148.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Jurisson, S. S., Benedict, J. J., Elder, R. C., Whittle, R. & Deutsch, E. (1983). Inorg. Chem. 22, 1332-1338.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stahl, K., Oddershede, J., Preikschat, H., Fischer, E. & Bennekou, J. S. (2006). Acta Cryst. C62, m112-m115.
- Van der Merwe, K. A., Visser, H. G. & Venter, J. A. (2009). Acta Cryst. E65, m1394

supplementary materials

Acta Cryst. (2010). E66, m159 [doi:10.1107/S160053680905106X]

# Dipotassium diaquabis (methylenediphosphonato- $\kappa^2 O, O'$ ) cobaltate (II)

## H. G. Visser, J. A. Venter and K. A. Van der Merwe

#### Comment

We reported a similar structure recently with the only differences being the cation and the +2 oxidation state of the cobalt ion (Van der Merwe et al.<i/>, 2009).

The Co<sup>III</sup> ion in the title complex, K[Co(C<sub>2</sub>H<sub>4</sub>O<sub>6</sub>P)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>], is in a slightly distorted octahedral environment with O–Co–O bond angles varying from 83.75 (10) to 96.25 (10)°. All the bonding distance and angles fall within the normal range observed for complexes of this nature. The P-O distances are significantly different for P=O and P-OH type bonds and vary from 1.501 (3) to 1.580 (3) Å. This could possibly be an indication that the assignment of positional disorders for the respective Co<sup>II</sup> complex previously was correct since these difference were not so prominent in the previous structure.

A three-dimensional network is provided by numerous hydrogen bonds and other weak interactions between the potassium ions and the oxygen atoms of the anionic species.

#### Experimental

CoCl<sub>2</sub>.6H<sub>2</sub>O (0,1696 g, 71 mmol) was dissolved in water (7 cm<sup>3</sup>) and heated to 70°C. Potassium bicarbonate was added to raise the pH to 5,5 after which methylene disphosphonate (0,25 g, 142 mmol), dissolved in water (5 cm<sup>3</sup>) was added dropwise. The final pH of the solution was adjusted to 1.50 to obtain the Co<sup>II</sup> salt as described previously (Van der Merwe et al. $\langle i/\rangle$  2009). Crystals of the Co<sup>III</sup> salt, suitable for X-ray diffraction, was obtained from redissolving and adding H<sub>2</sub>O<sub>2</sub> to the solution.

#### Refinement

The aliphatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with  $U_{iso}(H) = 1.2U_{eq}(C)$ . The hydroxyl and aqua ions were located from the difference Fourier map. The highest residual electron density was located 1.40 Å from O1 and the deepest hole was 0.64 Å from Co1.

#### **Figures**



Fig. 1. View of (I) (50% probability displacement ellipsoids). The potassium cations and hydrogen atoms have been omitted for clarity.

## Dipotassium diaquabis(methylenediphosphonato- $\kappa^2 O, O'$ )cobaltate(II)

#### Crystal data

| K <sub>2</sub> [Co(CH <sub>4</sub> O <sub>6</sub> P <sub>2</sub> ) <sub>2</sub> (H <sub>2</sub> O) <sub>2</sub> ] | <i>Z</i> = 2                                          |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| $M_r = 521.13$                                                                                                    | F(000) = 522                                          |
| Triclinic, PT                                                                                                     | $D_{\rm x} = 2.344 {\rm Mg m}^{-3}$                   |
| Hall symbol: -P 1                                                                                                 | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 6.4523 (3)  Å                                                                                                 | Cell parameters from 5231 reflections                 |
| b = 8.7056 (3) Å                                                                                                  | $\theta = 2.1 - 28.3^{\circ}$                         |
| c = 13.1930(5) Å                                                                                                  | $\mu = 2.23 \text{ mm}^{-1}$                          |
| $\alpha = 91.334 \ (2)^{\circ}$                                                                                   | T = 100  K                                            |
| $\beta = 93.304 \ (2)^{\circ}$                                                                                    | Cuboid, pink                                          |
| $\gamma = 93.333 \ (2)^{\circ}$                                                                                   | $0.28 \times 0.17 \times 0.17 \text{ mm}$             |
| $V = 738.32 (5) \text{ Å}^3$                                                                                      |                                                       |

#### Data collection

| Bruker X8 APEXII 4K Kappa CCD diffractometer               | 3645 independent reflections                                              |
|------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: sealed tube                              | 3194 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                   | $R_{\rm int} = 0.036$                                                     |
| phi and $\omega$ scans                                     | $\theta_{\text{max}} = 28.4^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$ |
| Absorption correction: multi-scan<br>SADABS (Bruker, 2004) | $h = -8 \rightarrow 8$                                                    |
| $T_{\min} = 0.635, T_{\max} = 0.690$                       | $k = -11 \rightarrow 9$                                                   |
| 13474 measured reflections                                 | $l = -16 \rightarrow 17$                                                  |
|                                                            |                                                                           |

#### Refinement

| Refinement on $F^2$             | 14 restraints                                                                       |
|---------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full      | H atoms treated by a mixture of independent and constrained refinement              |
| $R[F^2 > 2\sigma(F^2)] = 0.040$ | $w = 1/[\sigma^2(F_o^2) + (0.0164P)^2 + 3.9058P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| $wR(F^2) = 0.096$               | $(\Delta/\sigma)_{\rm max} < 0.001$                                                 |
| <i>S</i> = 1.18                 | $\Delta \rho_{max} = 0.95 \text{ e } \text{\AA}^{-3}$                               |
| 3645 reflections                | $\Delta \rho_{min} = -0.55 \text{ e } \text{\AA}^{-3}$                              |
| 235 parameters                  |                                                                                     |
|                                 |                                                                                     |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

|     | x            | У            | Ζ             | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|--------------|---------------|---------------------------|
| C2  | 0.6164 (6)   | 0.3660 (4)   | 0.4121 (3)    | 0.0083 (7)                |
| H2A | 0.6647       | 0.4636       | 0.3852        | 0.01*                     |
| H2B | 0.4955       | 0.3844       | 0.4501        | 0.01*                     |
| O2  | 0.7149 (4)   | 0.6643 (3)   | -0.06002 (19) | 0.0084 (5)                |
| 01  | 0.4857 (4)   | 0.6095 (3)   | 0.1386 (2)    | 0.0100 (5)                |
| O4  | 0.3898 (4)   | 0.8338 (3)   | 0.2356 (2)    | 0.0093 (5)                |
| 05  | 0.7656 (4)   | 0.7614 (3)   | 0.2543 (2)    | 0.0116 (5)                |
| O6  | 1.0177 (4)   | 0.7998 (3)   | 0.0450 (2)    | 0.0088 (5)                |
| 08  | 0.6907 (4)   | -0.1647 (3)  | 0.4464 (2)    | 0.0137 (6)                |
| 09  | 0.4598 (4)   | 0.0840 (3)   | 0.35124 (19)  | 0.0087 (5)                |
| O10 | 0.7627 (4)   | 0.1422 (3)   | 0.5352 (2)    | 0.0109 (5)                |
| 011 | 1.0208 (4)   | 0.3123 (3)   | 0.4451 (2)    | 0.0091 (5)                |
| O12 | 0.8299 (4)   | 0.4173 (3)   | 0.59244 (19)  | 0.0097 (5)                |
| 013 | 0.3411 (4)   | 0.3121 (3)   | 0.2569 (2)    | 0.0094 (5)                |
| 014 | 0.7069 (4)   | 0.2216 (3)   | 0.2347 (2)    | 0.0105 (5)                |
| P1  | 0.80660 (14) | 0.81239 (10) | -0.00988 (7)  | 0.00684 (18)              |
| P2  | 0.57617 (14) | 0.76121 (11) | 0.18262 (7)   | 0.00712 (18)              |
| P3  | 0.53703 (14) | 0.23561 (10) | 0.30689 (7)   | 0.00681 (18)              |
| P4  | 0.81776 (14) | 0.30133 (11) | 0.49860 (7)   | 0.00724 (18)              |
| K1  | 0.08042 (13) | 0.57684 (9)  | 0.19914 (6)   | 0.01125 (17)              |
| K2  | 0.02621 (13) | 0.04058 (10) | 0.31295 (7)   | 0.01350 (18)              |
| Co1 | 0.5          | 0.5          | 0             | 0.00676 (15)              |
| Co2 | 0.5          | 0            | 0.5           | 0.00634 (15)              |
| O7  | 0.8190 (4)   | 0.9319 (3)   | -0.0975 (2)   | 0.0092 (5)                |
| O3  | 0.2452 (4)   | 0.6119 (3)   | -0.0684 (2)   | 0.0112 (5)                |
| C1  | 0.6299 (6)   | 0.8839 (4)   | 0.0776 (3)    | 0.0079 (7)                |
| H1A | 0.4994       | 0.9006       | 0.0404        | 0.01*                     |
| H1B | 0.6864       | 0.9831       | 0.1048        | 0.01*                     |
| H8B | 0.778 (6)    | -0.215 (5)   | 0.482 (3)     | 0.02*                     |
| H8A | 0.699 (7)    | -0.185 (5)   | 0.3838 (14)   | 0.02*                     |
| H7  | 0.877 (7)    | 1.020 (3)    | -0.081 (4)    | 0.02*                     |
| H4  | 0.433 (8)    | 0.911 (4)    | 0.271 (3)     | 0.02*                     |
| H13 | 0.332 (8)    | 0.318 (6)    | 0.1935 (15)   | 0.02*                     |
| H3B | 0.175 (7)    | 0.665 (5)    | -0.029 (3)    | 0.02*                     |
| H3A | 0.266 (8)    | 0.661 (5)    | -0.122 (2)    | 0.02*                     |
| H12 | 0.872 (7)    | 0.5089 (18)  | 0.581 (2)     | 0.02*                     |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

# Atomic displacement parameters $(\text{\AA}^2)$

|    | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|----|-------------|-------------|-------------|--------------|--------------|--------------|
| C2 | 0.0098 (17) | 0.0062 (16) | 0.0087 (16) | -0.0003 (13) | -0.0010 (13) | 0.0003 (13)  |
| O2 | 0.0098 (12) | 0.0077 (12) | 0.0073 (12) | -0.0033 (10) | 0.0005 (10)  | 0.0002 (9)   |
| 01 | 0.0146 (13) | 0.0065 (12) | 0.0089 (12) | -0.0016 (10) | 0.0035 (10)  | 0.0000 (10)  |
| O4 | 0.0087 (12) | 0.0097 (13) | 0.0092 (12) | 0.0009 (10)  | -0.0002 (10) | -0.0023 (10) |

# supplementary materials

| 05  | 0.0108 (13) | 0.0146 (13) | 0.0095 (13) | 0.0031 (10)  | -0.0004 (10) | -0.0010 (10) |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| 06  | 0.0082 (12) | 0.0078 (12) | 0.0102 (12) | -0.0004 (9)  | -0.0006 (10) | -0.0002 (10) |
| 08  | 0.0150 (14) | 0.0183 (14) | 0.0087 (13) | 0.0097 (11)  | -0.0005 (11) | -0.0010 (11) |
| 09  | 0.0138 (13) | 0.0062 (12) | 0.0060 (12) | -0.0009 (10) | 0.0005 (10)  | 0.0016 (9)   |
| O10 | 0.0088 (12) | 0.0092 (12) | 0.0146 (13) | -0.0013 (10) | -0.0011 (10) | 0.0065 (10)  |
| 011 | 0.0084 (12) | 0.0096 (12) | 0.0092 (12) | -0.0005 (10) | 0.0020 (10)  | 0.0003 (10)  |
| 012 | 0.0139 (13) | 0.0077 (12) | 0.0072 (12) | -0.0016 (10) | 0.0002 (10)  | -0.0008 (10) |
| 013 | 0.0109 (13) | 0.0116 (13) | 0.0060 (12) | 0.0023 (10)  | -0.0004 (10) | 0.0006 (10)  |
| 014 | 0.0118 (13) | 0.0127 (13) | 0.0075 (12) | 0.0023 (10)  | 0.0023 (10)  | 0.0021 (10)  |
| P1  | 0.0077 (4)  | 0.0062 (4)  | 0.0067 (4)  | 0.0000 (3)   | 0.0006 (3)   | 0.0005 (3)   |
| P2  | 0.0080 (4)  | 0.0076 (4)  | 0.0059 (4)  | 0.0014 (3)   | 0.0010 (3)   | -0.0004 (3)  |
| P3  | 0.0086 (4)  | 0.0063 (4)  | 0.0057 (4)  | 0.0013 (3)   | 0.0005 (3)   | 0.0006 (3)   |
| P4  | 0.0083 (4)  | 0.0063 (4)  | 0.0069 (4)  | -0.0006 (3)  | -0.0010 (3)  | 0.0008 (3)   |
| K1  | 0.0112 (4)  | 0.0122 (4)  | 0.0107 (4)  | 0.0026 (3)   | 0.0011 (3)   | 0.0015 (3)   |
| K2  | 0.0109 (4)  | 0.0126 (4)  | 0.0167 (4)  | 0.0017 (3)   | -0.0022 (3)  | -0.0013 (3)  |
| Col | 0.0083 (3)  | 0.0060 (3)  | 0.0061 (3)  | 0.0004 (2)   | 0.0010 (2)   | -0.0001 (2)  |
| Co2 | 0.0072 (3)  | 0.0061 (3)  | 0.0058 (3)  | 0.0001 (2)   | 0.0008 (2)   | 0.0007 (2)   |
| 07  | 0.0137 (13) | 0.0055 (12) | 0.0081 (12) | -0.0021 (10) | 0.0003 (10)  | 0.0016 (10)  |
| 03  | 0.0123 (13) | 0.0130 (13) | 0.0091 (13) | 0.0030 (10)  | 0.0036 (10)  | 0.0028 (10)  |
| C1  | 0.0104 (17) | 0.0061 (16) | 0.0077 (16) | 0.0015 (13)  | 0.0016 (13)  | 0.0017 (13)  |
|     |             |             |             |              |              |              |

## Geometric parameters (Å, °)

| C2—P4                | 1.803 (4)  | O13—K1                 | 3.018 (3)  |
|----------------------|------------|------------------------|------------|
| C2—P3                | 1.804 (4)  | O13—K2                 | 3.156 (3)  |
| C2—H2A               | 0.97       | O13—H13                | 0.837 (19) |
| C2—H2B               | 0.97       | O14—P3                 | 1.502 (3)  |
| O2—P1                | 1.509 (3)  | O14—K2 <sup>ii</sup>   | 2.829 (3)  |
| O1—Co1               | 2.052 (3)  | P1—O7                  | 1.575 (3)  |
| O2—Co1               | 2.132 (2)  | P1—C1                  | 1.795 (4)  |
| O3—Co1               | 2.127 (3)  | P2—C1                  | 1.806 (4)  |
| O1—P2                | 1.503 (3)  | K1—012 <sup>v</sup>    | 2.776 (3)  |
| O1—K1                | 2.779 (3)  | K1—O5 <sup>vi</sup>    | 2.780 (3)  |
| O4—P2                | 1.581 (3)  | K1—O6 <sup>vi</sup>    | 2.871 (3)  |
| O4—K1                | 2.922 (3)  | K1—O3 <sup>vii</sup>   | 3.023 (3)  |
| O4—K2 <sup>i</sup>   | 3.235 (3)  | K1—O2 <sup>viii</sup>  | 3.153 (3)  |
| O4—H4                | 0.84 (2)   | K2—O14 <sup>vi</sup>   | 2.829 (3)  |
| O5—P2                | 1.501 (3)  | K2—O11 <sup>vi</sup>   | 2.909 (3)  |
| O5—K1 <sup>ii</sup>  | 2.780 (3)  | K2—O10 <sup>iv</sup>   | 2.913 (3)  |
| O5—K2 <sup>iii</sup> | 2.936 (3)  | K2—O5 <sup>ix</sup>    | 2.936 (3)  |
| O6—P1                | 1.516 (3)  | K2—O7 <sup>viii</sup>  | 3.076 (3)  |
| O6—K1 <sup>ii</sup>  | 2.871 (3)  | K2—O4 <sup>x</sup>     | 3.235 (3)  |
| O8—Co2               | 2.081 (3)  | K2—O8 <sup>vi</sup>    | 3.334 (3)  |
| O8—K2 <sup>ii</sup>  | 3.334 (3)  | Co1—O1 <sup>viii</sup> | 2.052 (3)  |
| O8—H8B               | 0.854 (19) | Co1—O3                 | 2.126 (3)  |
| O8—H8A               | 0.845 (19) | Co1—O3 <sup>viii</sup> | 2.126 (3)  |
|                      |            |                        |            |

| O9—P3                    | 1.525 (3)   | Co1—O2 <sup>viii</sup>                  | 2.132 (2)  |
|--------------------------|-------------|-----------------------------------------|------------|
| O9—Co2                   | 2.117 (2)   | Co2—O10 <sup>iv</sup>                   | 2.064 (3)  |
| O9—K2                    | 2.816 (3)   | Co2—O8 <sup>iv</sup>                    | 2.081 (3)  |
| O10—P4                   | 1.508 (3)   | Co2—O9 <sup>iv</sup>                    | 2.117 (2)  |
| O10—Co2                  | 2.064 (3)   | O7—K2 <sup>viii</sup>                   | 3.076 (3)  |
| O10—K2 <sup>iv</sup>     | 2.913 (3)   | O7—H7                                   | 0.849 (19) |
| O11—P4                   | 1.523 (3)   | O3—K1 <sup>vii</sup>                    | 3.023 (3)  |
| 011—K2 <sup>ii</sup>     | 2.909 (3)   | O3—H3B                                  | 0.855 (19) |
| O12—P4                   | 1.575 (3)   | O3—H3A                                  | 0.851 (19) |
| O12—K1 <sup>v</sup>      | 2.776 (3)   | C1—H1A                                  | 0.97       |
| O12—H12                  | 0.848 (12)  | C1—H1B                                  | 0.97       |
| O13—P3                   | 1.581 (3)   |                                         |            |
| P4—C2—P3                 | 115.32 (19) | P2 <sup>vi</sup> —K1—H13                | 153.4 (10) |
| Р4—С2—Н2А                | 108.4       | Co1—K1—H13                              | 54.0 (7)   |
| Р3—С2—Н2А                | 108.4       | K2 <sup>i</sup> —K1—H13                 | 146.4 (9)  |
| Р4—С2—Н2В                | 108.4       | 09—K2—O14 <sup>vi</sup>                 | 135.52 (8) |
| Р3—С2—Н2В                | 108.4       | 09—K2—O11 <sup>vi</sup>                 | 83.20 (8)  |
| H2A—C2—H2B               | 107.5       | O9—K2—O10 <sup>iv</sup>                 | 60.10 (7)  |
| P1—O2—Co1                | 127.62 (15) | 09—K2—O5 <sup>ix</sup>                  | 130.52 (8) |
| P2—O1—Co1                | 133.27 (16) | 09—K2—O7 <sup>viii</sup>                | 77.74 (7)  |
| P2—O1—K1                 | 106.53 (13) | O5 <sup>ix</sup> —K2—O7 <sup>viii</sup> | 91.81 (8)  |
| Co1—O1—K1                | 108.92 (11) | O9—K2—O13                               | 49.14 (7)  |
| P2—O4—K1                 | 98.19 (12)  | O14 <sup>vi</sup> —K2—O13               | 86.68 (8)  |
| Р2—О4—Н4                 | 110 (4)     | O11 <sup>vi</sup> —K2—O13               | 66.26 (7)  |
| K1—O4—H4                 | 148 (4)     | O10 <sup>iv</sup> —K2—O13               | 107.66 (7) |
| K2 <sup>i</sup> —O4—H4   | 66 (4)      | O5 <sup>ix</sup> —K2—O13                | 150.33 (8) |
| Co2—O8—H8B               | 127 (3)     | O7 <sup>viii</sup> —K2—O13              | 58.52 (7)  |
| K2 <sup>ii</sup> —O8—H8B | 99 (3)      | O9—K2—O4 <sup>x</sup>                   | 50.98 (7)  |
| Co2—O8—H8A               | 123 (3)     | O13—K2—O4 <sup>x</sup>                  | 82.11 (7)  |
| K2 <sup>ii</sup> —O8—H8A | 60 (4)      | 09—K2—O8 <sup>vi</sup>                  | 127.53 (8) |
| H8B—O8—H8A               | 110 (3)     | O13—K2—O8 <sup>vi</sup>                 | 159.31 (8) |
| P3—O9—Co2                | 130.58 (16) | O9—K2—P3                                | 23.35 (5)  |
| Р3—09—К2                 | 109.60 (13) | O14 <sup>vi</sup> —K2—P3                | 112.35 (6) |
| Co2—O9—K2                | 101.82 (10) | O11 <sup>vi</sup> —K2—P3                | 73.94 (6)  |
| P4                       | 129.21 (16) | O10 <sup>iv</sup> —K2—P3                | 82.69 (6)  |
| P4—O12—H12               | 115.7 (19)  | O5 <sup>ix</sup> —K2—P3                 | 145.87 (6) |
| K1 <sup>v</sup> —O12—H12 | 98 (2)      | O7 <sup>viii</sup> —K2—P3               | 66.54 (5)  |
| P3—O13—K1                | 155.08 (15) | O13—K2—P3                               | 25.79 (5)  |
| Р3—013—К2                | 93.90 (12)  | O4 <sup>x</sup> —K2—P3                  | 64.15 (5)  |
| K1—013—K2                | 106.16 (8)  | O8 <sup>vi</sup> —K2—P3                 | 147.32 (6) |
| Р3—О13—Н13               | 118 (4)     | O9—K2—P4 <sup>vi</sup>                  | 103.51 (6) |
| K1—O13—H13               | 71 (4)      | O13—K2—P4 <sup>vi</sup>                 | 88.53 (5)  |

# supplementary materials

| K2—O13—H13               | 107 (4)     | P3—K2—P4 <sup>vi</sup>     | 97.09 (3)     |
|--------------------------|-------------|----------------------------|---------------|
| O2—P1—O6                 | 114.49 (15) | O9—K2—P3 <sup>vi</sup>     | 143.95 (6)    |
| O2—P1—O7                 | 105.55 (15) | P3—K2—P3 <sup>vi</sup>     | 124.45 (3)    |
| O6—P1—O7                 | 111.05 (15) | O1 <sup>viii</sup> —Co1—O1 | 180.00 (7)    |
| O2—P1—C1                 | 109.75 (16) | O1 <sup>viii</sup> —Co1—O3 | 85.70 (11)    |
| O6—P1—C1                 | 109.14 (16) | O1—Co1—O3                  | 94.30 (11)    |
| O7—P1—C1                 | 106.53 (15) | O1—Co1—O3 <sup>viii</sup>  | 85.70 (11)    |
| O5—P2—O1                 | 118.26 (16) | O3—Co1—O3 <sup>viii</sup>  | 180           |
| O5—P2—O4                 | 111.00 (15) | O1 <sup>viii</sup> —Co1—O2 | 83.75 (10)    |
| O1—P2—O4                 | 104.54 (15) | O1—Co1—O2                  | 96.25 (10)    |
| O5—P2—C1                 | 109.50 (17) | O3—Co1—O2                  | 90.87 (10)    |
| O1—P2—C1                 | 107.35 (16) | O3 <sup>viii</sup> —Co1—O2 | 89.13 (10)    |
| O4—P2—C1                 | 105.35 (15) | O1—Co1—O2 <sup>viii</sup>  | 83.75 (10)    |
| O5—P2—K1                 | 130.08 (11) | O3—Co1—O2 <sup>viii</sup>  | 89.13 (10)    |
| O1—P2—K1                 | 49.28 (11)  | O2—Co1—O2 <sup>viii</sup>  | 180           |
| O4—P2—K1                 | 55.38 (10)  | O1 <sup>viii</sup> —Co1—K1 | 138.32 (8)    |
| C1—P2—K1                 | 120.38 (13) | O1—Co1—K1                  | 41.68 (8)     |
| O14—P3—O9                | 114.63 (15) | O3—Co1—K1                  | 69.01 (7)     |
| O14—P3—O13               | 112.37 (15) | O3 <sup>viii</sup> —Co1—K1 | 110.99 (7)    |
| O9—P3—O13                | 107.36 (15) | O2—Co1—K1                  | 127.38 (7)    |
| O14—P3—C2                | 111.63 (17) | O2 <sup>viii</sup> —Co1—K1 | 52.62 (7)     |
| O9—P3—C2                 | 107.33 (16) | O1—Co1—K1 <sup>viii</sup>  | 138.32 (8)    |
| O13—P3—C2                | 102.70 (15) | O3—Co1—K1 <sup>viii</sup>  | 110.99 (7)    |
| O14—P3—K2                | 131.70 (12) | O2—Co1—K1 <sup>viii</sup>  | 52.62 (7)     |
| O9—P3—K2                 | 47.05 (10)  | K1—Co1—K1 <sup>viii</sup>  | 180           |
| O13—P3—K2                | 60.31 (10)  | O10 <sup>iv</sup> —Co2—O10 | 180           |
| C2—P3—K2                 | 116.55 (12) | O10 <sup>iv</sup> —Co2—O8  | 91.42 (11)    |
| O10—P4—O11               | 113.25 (15) | O10—Co2—O8                 | 88.58 (11)    |
| O10—P4—O12               | 108.39 (15) | O10—Co2—O8 <sup>iv</sup>   | 91.42 (11)    |
| O11—P4—O12               | 110.21 (15) | O8—Co2—O8 <sup>iv</sup>    | 180.00 (14)   |
| O10—P4—C2                | 111.43 (16) | O10 <sup>iv</sup> —Co2—O9  | 86.68 (10)    |
| O11—P4—C2                | 107.68 (16) | O10—Co2—O9                 | 93.32 (10)    |
| O12—P4—C2                | 105.61 (16) | O8—Co2—O9                  | 89.71 (10)    |
| O1—K1—O4                 | 50.58 (7)   | O8 <sup>iv</sup> —Co2—O9   | 90.29 (10)    |
| O5 <sup>vi</sup> —K1—O4  | 90.83 (8)   | O10—Co2—O9 <sup>iv</sup>   | 86.68 (10)    |
| O6 <sup>vi</sup> —K1—O4  | 71.15 (8)   | O8—Co2—O9 <sup>iv</sup>    | 90.29 (10)    |
| O12 <sup>v</sup> —K1—O13 | 69.91 (8)   | O9—Co2—O9 <sup>iv</sup>    | 180.0000 (10) |
| O1—K1—O13                | 66.27 (8)   | O10 <sup>iv</sup> —Co2—K2  | 48.07 (7)     |
| O5 <sup>vi</sup> —K1—O13 | 146.12 (8)  | О10—Со2—К2                 | 131.93 (7)    |
| O6 <sup>vi</sup> —K1—O13 | 142.50 (8)  | O8—Co2—K2                  | 110.65 (8)    |
| O4—K1—O13                | 99.99 (8)   | O8 <sup>iv</sup> —Co2—K2   | 69.35 (8)     |
| O1—K1—P2                 | 24.20 (6)   | O9—Co2—K2                  | 45.66 (7)     |

| $O6^{vi}$ —K1—P276.27 (6) $O10$ —Co2—K2 <sup>iv</sup> 48.07 (7) $O4$ —K1—P226.43 (5) $O8$ —Co2—K2 <sup>iv</sup> 69.35 (8) $O13$ —K1—P281.17 (6) $O9$ —Co2—K2 <sup>iv</sup> 134.34 (7) $O1$ —K1—Co129.41 (6)K2—Co2—K2 <sup>iv</sup> 180.00 (2) $O5^{vi}$ —K1—Co1146.14 (6)P1—O7—K2 <sup>viii</sup> 139.92 (14) $O6^{vi}$ —K1—Co174.83 (5)P1—O7—H7116 (3) $O4$ —K1Co176.27 (5)K2 <sup>viii</sup> 00 (2) | O5 <sup>vi</sup> —K1—P2    | 116.53 (7)  | O9 <sup>iv</sup> —Co2—K2  | 134.34 (7)  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------|---------------------------|-------------|
| $O4-K1-P2$ 26.43 (5) $O8-Co2-K2^{iv}$ 69.35 (8) $O13-K1-P2$ $81.17$ (6) $O9-Co2-K2^{iv}$ $134.34$ (7) $O1-K1-Co1$ $29.41$ (6) $K2-Co2-K2^{iv}$ $180.00$ (2) $O5^{vi}-K1-Co1$ $146.14$ (6) $P1-O7-K2^{viii}$ $139.92$ (14) $O6^{vi}-K1-Co1$ $74.83$ (5) $P1-O7-H7$ $116$ (3) $O4-K1-Co1$ $76.27$ (5) $K2^{viii}$ $O7-H7$ $P0$ (2)                                                                      | O6 <sup>vi</sup> —K1—P2    | 76.27 (6)   | O10—Co2—K2 <sup>iv</sup>  | 48.07 (7)   |
| $O13-K1-P2$ $81.17 (6)$ $O9-Co2-K2^{iv}$ $134.34 (7)$ $O1-K1-Co1$ $29.41 (6)$ $K2-Co2-K2^{iv}$ $180.00 (2)$ $O5^{vi}-K1-Co1$ $146.14 (6)$ $P1-O7-K2^{viii}$ $139.92 (14)$ $O6^{vi}-K1-Co1$ $74.83 (5)$ $P1-O7-H7$ $116 (3)$ $O4-K1-Co1$ $76 27 (5)$ $K2^{viii}$ $O7-K7$                                                                                                                               | O4—K1—P2                   | 26.43 (5)   | O8—Co2—K2 <sup>iv</sup>   | 69.35 (8)   |
| $O1-K1-Co1$ 29.41 (6) $K2-Co2-K2^{iv}$ 180.00 (2) $O5^{vi}-K1-Co1$ 146.14 (6) $P1-O7-K2^{viii}$ 139.92 (14) $O6^{vi}-K1-Co1$ 74.83 (5) $P1-O7-H7$ 116 (3) $O4-K1-Co1$ 76.27 (5) $K2^{viii}$ $O7-H7$                                                                                                                                                                                                   | O13—K1—P2                  | 81.17 (6)   | O9—Co2—K2 <sup>iv</sup>   | 134.34 (7)  |
| $O5^{vi}$ —K1—Co1 146.14 (6) P1—O7—K2^{viii} 139.92 (14) $O6^{vi}$ —K1—Co1 74.83 (5) P1—O7—H7 116 (3) $O4$ —K1—Co1 76 27 (5) K2 <sup>viii</sup> O7 U7                                                                                                                                                                                                                                                 | O1—K1—Co1                  | 29.41 (6)   | K2—Co2—K2 <sup>iv</sup>   | 180.00 (2)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                  | O5 <sup>vi</sup> —K1—Co1   | 146.14 (6)  | P1—O7—K2 <sup>viii</sup>  | 139.92 (14) |
| $O(4, K_1, C_{21})$ $T_{6,27,(5)}$ $V(2)^{111}$ $O(7, 117)$ $O(2)$                                                                                                                                                                                                                                                                                                                                    | O6 <sup>vi</sup> —K1—Co1   | 74.83 (5)   | Р1—О7—Н7                  | 116 (3)     |
| $V_{4-K1-C01}$ $V_{0.27}(5)$ $K_{2} - O_{-H}$ $y_{0}(5)$                                                                                                                                                                                                                                                                                                                                              | O4—K1—Co1                  | 76.27 (5)   | K2 <sup>viii</sup> —O7—H7 | 90 (3)      |
| O13—K1—Co1 67.68 (5) Co1—O3—K1 <sup>vii</sup> 118.88 (11)                                                                                                                                                                                                                                                                                                                                             | O13—K1—Co1                 | 67.68 (5)   | Co1—O3—K1 <sup>vii</sup>  | 118.88 (11) |
| O3 <sup>vii</sup> —K1—Co1 90.27 (5) Co1—O3—H3B 117 (3)                                                                                                                                                                                                                                                                                                                                                | O3 <sup>vii</sup> —K1—Co1  | 90.27 (5)   | Co1—O3—H3B                | 117 (3)     |
| O2 <sup>viii</sup> —K1—Co1 32.50 (5) K1 <sup>vii</sup> —O3—H3B 104 (3)                                                                                                                                                                                                                                                                                                                                | O2 <sup>viii</sup> —K1—Co1 | 32.50 (5)   | K1 <sup>vii</sup> —O3—H3B | 104 (3)     |
| P2—K1—Co1 51.534 (19) Co1—O3—H3A 118 (3)                                                                                                                                                                                                                                                                                                                                                              | P2—K1—Co1                  | 51.534 (19) | Со1—О3—НЗА                | 118 (3)     |
| O1—K1—H13 59.5 (10) K1 <sup>vii</sup> —O3—H3A 85 (3)                                                                                                                                                                                                                                                                                                                                                  | O1—K1—H13                  | 59.5 (10)   | K1 <sup>vii</sup> —O3—H3A | 85 (3)      |
| O5 <sup>vi</sup> —K1—H13 159.3 (8) H3B—O3—H3A 110 (3)                                                                                                                                                                                                                                                                                                                                                 | O5 <sup>vi</sup> —K1—H13   | 159.3 (8)   | НЗВ—ОЗ—НЗА                | 110 (3)     |
| O6 <sup>vi</sup> —K1—H13 127.9 (5) P1—C1—P2 115.47 (19)                                                                                                                                                                                                                                                                                                                                               | O6 <sup>vi</sup> —K1—H13   | 127.9 (5)   | P1—C1—P2                  | 115.47 (19) |
| O4—K1—H13 102.4 (10) P1—C1—H1A 108.4                                                                                                                                                                                                                                                                                                                                                                  | O4—K1—H13                  | 102.4 (10)  | P1—C1—H1A                 | 108.4       |
| O13—K1—H13 16.1 (4) P2—C1—H1A 108.4                                                                                                                                                                                                                                                                                                                                                                   | O13—K1—H13                 | 16.1 (4)    | P2-C1-H1A                 | 108.4       |
| O3 <sup>vii</sup> —K1—H13 87.6 (9) P1—C1—H1B 108.4                                                                                                                                                                                                                                                                                                                                                    | O3 <sup>vii</sup> —K1—H13  | 87.6 (9)    | P1—C1—H1B                 | 108.4       |
| O2 <sup>viii</sup> —K1—H13 34.1 (4) P2—C1—H1B 108.4                                                                                                                                                                                                                                                                                                                                                   | O2 <sup>viii</sup> —K1—H13 | 34.1 (4)    | P2—C1—H1B                 | 108.4       |
| P2—K1—H13 79.2 (10) H1A—C1—H1B 107.5                                                                                                                                                                                                                                                                                                                                                                  | Р2—К1—Н13                  | 79.2 (10)   | H1A—C1—H1B                | 107.5       |

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*+1, *y*, *z*; (iii) *x*+1, *y*+1, *z*; (iv) -*x*+1, -*y*, -*z*+1; (v) -*x*+1, -*y*+1, -*z*+1; (vi) *x*-1, *y*, *z*; (vii) -*x*, -*y*+1, -*z*; (viii) -*x*, -*y*+1, -*z*; (viii) -*x*, -*y*+1, -*z*; (ix) *x*-1, *y*-1, *z*; (x) *x*, *y*-1, *z*.

### *Hydrogen-bond geometry* $(Å, \circ)$

| D—H···A                                                                                                   | <i>D</i> —Н                                              | H···A                  | $D \cdots A$          | D—H··· $A$                           |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------|-----------------------|--------------------------------------|
| O3—H3A···O14 <sup>viii</sup>                                                                              | 0.85 (2)                                                 | 1.83 (2)               | 2.680 (4)             | 175 (4)                              |
| O3—H3B···O6 <sup>vi</sup>                                                                                 | 0.86 (2)                                                 | 1.89 (2)               | 2.737 (4)             | 172 (4)                              |
| O4—H4···O9 <sup>i</sup>                                                                                   | 0.84 (2)                                                 | 1.81 (2)               | 2.632 (4)             | 166 (5)                              |
| 07—H7…O6 <sup>xi</sup>                                                                                    | 0.85 (2)                                                 | 1.72 (2)               | 2.570 (4)             | 177 (5)                              |
| O8—H8A···O5 <sup>x</sup>                                                                                  | 0.85 (2)                                                 | 1.84 (2)               | 2.678 (4)             | 170 (4)                              |
| O8—H8B···O11 <sup>xii</sup>                                                                               | 0.85 (2)                                                 | 1.84 (2)               | 2.687 (4)             | 176 (5)                              |
| O12—H12···O11 <sup>xiii</sup>                                                                             | 0.85 (1)                                                 | 1.72 (1)               | 2.561 (4)             | 175 (5)                              |
| O13—H13···O2 <sup>viii</sup>                                                                              | 0.84 (2)                                                 | 1.78 (2)               | 2.616 (4)             | 174 (5)                              |
| Symmetry codes: (viii) - <i>x</i> +1, - <i>y</i> +1, - <i>z</i> ; (vi) <i>x</i> -1, <i>y</i> , <i>z</i> ; | (i) <i>x</i> , <i>y</i> +1, <i>z</i> ; (xi) - <i>x</i> - | +2, -y+2, -z; (x) x, y | -1, z; (xii) -x+2, -y | , <i>-z</i> +1; (xiii) <i>-x</i> +2, |

-y+1, -z+1.

Fig. 1

